
MEDIUM-POWER AMPLIFIERS

DESCRIPTION

The 2N5322 and 2N5323 are silicon planar epitaxial PNP transistors in Jedec TO-39 metal case. They are especially intended for high-voltage medium power applications in industrial and commercial equipments.

INTERNAL SCHEMATIC DIAGRAM

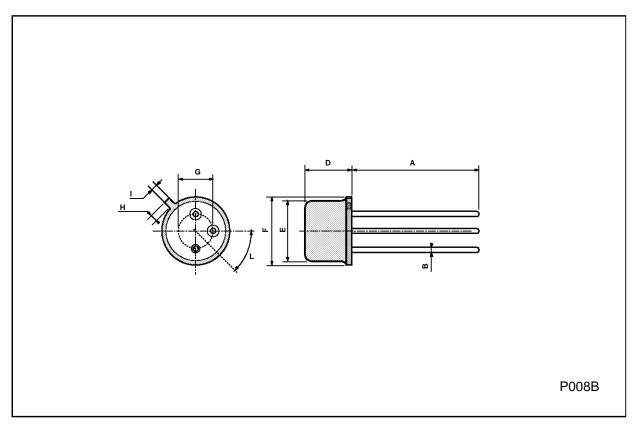
ABSOLUTE MAXIMUM RATINGS

Symbol	Doromotor	Va	Linit	
	Parameter	2N5322	2N5323	Unit
V _{CBO}	Collector-base Voltage (I _E = 0)	- 100	- 75	٧
V_{CEV}	Collector-emitter Voltage (V _{BE} = 1.5 V)	- 100	- 75	V
V_{CEO}	Collector-emitter Voltage (I _B = 0)	- 75	- 50	٧
V _{EBO}	Emitter-base Voltage (I _C = 0)	- 6	- 5	V
Ic	Collector Current	- 2		А
Ι _Β	Base Current	– 1		Α
P _{tot}	Total Power Dissipation at $T_{amb} \le 25$ °C at $T_{case} \le 25$ °C	1 10		W W
T _{stg} , T _j	Storage and Junction Temperature	- 65 to 200		°C

October 1988 1/4

THERMAL DATA

R _{th j-case}	Thermal Resistance Junction-case	Max	17.5	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	175	°C/W


ELECTRICAL CHARACTERISTICS($T_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cutoff Current (I _E = 0)	For 2N5322 V _{CB} = -80 V For 2N5323			- 0.5	μА
		V _{CB} = -60 V			– 5	μΑ
I _{EBO}	Emitter Cutoff Current (I _C = 0)	For 2N5322 V _{EB} = - 5 V For 2N5323		- 0.1		μА
		$V_{EB} = -4 V$		- 0.5		μΑ
V(_{BR)CEV}	Collector-emitter Breakdown Voltage (V _{BE} = 1.5 V)	I _C = - 0.1 mA For 2N For 2N				V V
V _{(BR)CEO} *	Collector-emitter Breakdown Voltage (I _B = 0)	I _C = - 10 mA For 2N For 2N				V V
V _{(BR)EBO}	Emitter-base Breakdown Voltage (I _C = 0)	I _E = -0.1 mA For 2N For 2N				V V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	I _C = - 500 mA I _B = - 5 For 2N For 2N	5322		- 0.7 - 1.2	V V
V _{BE} *	Base-emitter Voltage	I _C = - 500 mA V _{CE} = - For 2N For 2N	5322		- 1.1 - 1.4	V V
h _{FE} *	DC Current Gain	For 2N5322 $I_{C} = -500 \text{ mA} \qquad V_{CE} = -1000 \text{ mA}$ $I_{C} = -1 \text{ A} \qquad V_{CE} = -1000 \text{ mB}$ For 2N5323			130	
		$I_C = -500 \text{ mA}$ $V_{CE} = -$	– 4 V 40		250	
f⊤	Transition Frequency	I _C = - 50 mA V _{CE} = - f = 10 MHz	– 4 V 50			MHz
ton	Turn-on Time	$I_{C} = -500 \text{ mA}$ $V_{CC} = -100 \text{ mA}$ $V_{CC} = -100 \text{ mA}$	- 30 V		100	ns
t _{off}	Turn-off Time	$I_{C} = -500 \text{ mA}$ $V_{CC} = -100 \text{ mA}$ $V_{CC} = -100 \text{ mA}$	- 30 V		1000	ns

 $^{^{\}ast}$ Pulsed : pulse duration = 300 $\mu s,$ duty cycle = 1 %.

TO39 MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	12.7			0.500		
В			0.49			0.019
D			6.6			0.260
E			8.5			0.334
F			9.4			0.370
G	5.08			0.200		
Н			1.2			0.047
I			0.9			0.035
L	45° (typ.)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

